Группа Г02

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СОСУДЫ И АППАРАТЫ

Нормы и методы расчета на прочность укрепления отверстий

Vessels and apparatus. Norms and methods of strength calculation for openings reinforcement

ОКСТУ 3603

Дата введения 1990-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химического и нефтяного машиностроения ИСПОЛНИТЕЛИ
- В.А. Фрейтаг, канд. техн. наук; В.И. Рачков, канд. техн. наук (руководители темы); О.С. Суворова, канд. техн. наук; В.Д. Бабанский; А.Р. Бащенко; Ю.Б. Яковлев, канд. техн. наук.
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 18.05.89 N1263
 - 3. Срок проверки 1995 г.; периодичность проверки 5 лет.
 - 4. B3AMEH ΓΟCT 25755-81
 - 5. Стандарт полностью соответствует СТ СЭВ 1639-88.
 - 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ:

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
ГОСТ 14249-89	1.1; 2.1.1; 2.3.1; 5

Настоящий стандарт устанавливает нормы и методы расчета на прочность укрепления отверстий в обечайках, переходах и выпуклых днищах сосудов и аппаратов, применяемых в химической нефтеперерабатывающей и смежных отраслях промышленности, работающих под действием внутреннего или наружного давления.

Нормы и методы расчета применимы для определения размеров укрепляющих элементов, а также допускаемых давлений цилиндрических и конических обечаек, выпуклых и конических днищ с круглыми и овальными отверстиями при соблюдении "Правил устройства и безопасной эксплуатации сосудов, работающих под давлением", утвержденных Госгортехнадзором СССР, и при условии, что отклонения от геометрической формы и неточности изготовления рассчитываемых элементов сосудов и аппаратов не превышают допусков, установленных нормативно-технической документацией.

Основные термины и их пояснения приведены в приложении.

1. УСЛОВИЯ ПРИМЕНЕНИЯ

1.1. Стандарт действителен при условии выбора толщин стенок обечаек, переходов и днищ в соответствии с ГОСТ 14249.

Приведенные ниже методы расчета применимы для определения размеров укрепляющих элементов, а также допускаемых давлений цилиндрических и конических обечаек, выпуклых и конических днищ с круглыми и овальными отверстиями.

Расчетные схемы приведены в приложении.

1.2. Пределы применения расчетных формул и номограмм ограничиваются условиями, приведенными в табл. 1.

Таблица 1

	Условия применения формул для расчета укрепления отверстий			
Наименова- ние параметров	в цилиндричес ких обечайках	в конических обечайках, переходах или днищах	в эллиптически х днищах	в сферических и торосферичес ких днищах
Отношение диаметров				

	$\frac{d_{\mathbf{p}} - 2c_{s}}{D} \le 1,0$	$\frac{d_{\mathbf{p}} - 2c_{s}}{D_{\mathbf{K}}} \le 1,0$	$\frac{d_{\mathbf{p}} - 2c_s}{D} \le 0,6$	$\frac{d_{\rm p} - 2c_s}{D} \le 0.6$
Отношение толщины стенки обечайки или днища к диаметру	$\frac{s-c}{D} \le 0,1$	$\frac{s-c}{D_{\mathbf{K}}} \le \frac{0,1}{co}$	$\frac{s-c}{D} \le 0,1$	$\frac{s-c}{D} \le 0,1$

- 1.3. При значениях отношений, превышающих пределы, установленные в табл. 1, рекомендуется использовать специальные методы расчета на прочность укреплений отверстий, не охватываемые настоящим стандартом.
- 1.4. При установке наклонных штуцеров с круговым поперечным сечением настоящий метод применим, если угол γ (черт. 9б) не превышает 45°, а отношение осей овального отверстия d_1 и d_2 (черт 9а) удовлетворяет условию

$$\frac{d_1}{d_2} \le 1 + 2 \frac{\sqrt{D_{\mathbf{p}}(s - c)}}{d_2}.\tag{1}$$

Эти ограничения не распространяются на тангенциальные штуцера (черт. 9в), на наклонные штуцера, ось которых лежит в плоскости поперечного сечения обечайки (черт. 9г). Для смещенных (нецентральных) штуцеров на эллиптических днищах угол γ (черт. 11) не должен превышать 60° .

1.5. Расстояние от края штуцера до края внешней поверхности сферического неотбортованного и торосферического днища, измеряемое по проекции образующей на плоскости основания днища, должно быть не менее

$$\max\{0,10(D+2s);(0,09D+s)\}$$

Малые отверстия, диаметр которых удовлетворяет условию

$$d_{\mathbf{p}} \le \max \left\{ (s-c); 0, 2\sqrt{D_{\mathbf{p}}(s-c)} \right\}, \tag{2}$$

допускается размещать в краевой зоне выпуклых днищ без специальных расчетных или экспериментальных обоснований.

При размещении отверстий в краевой зоне цилиндрических и конических обечаек необходим учет ограничений, указанных в п. 2.5.4.

В краевой зоне эллиптических и полусферических днищ допускается размещение отверстий без ограничений.

2. ОСНОВНЫЕ ФОРМУЛЫ РАСЧЕТА

- 2.1. Расчетные диаметры
- 2.1.1. Расчетные диаметры укрепляемых элементов определяют по формулам:
- 1) для цилиндрической обечайки

$$D_{p} = D; (3)$$

2) для конической обечайки, перехода или днища

$$D_{\rm p} = \frac{D_{\rm K}}{\cos \alpha};\tag{4}$$

3) для эллиптических днищ

$$D_{\rm p} = \frac{D^2}{2H} \sqrt{1 - 4\frac{(D^2 - 4H^2)}{D^4} \cdot x^2} ; (5)$$

4) в случае эллиптических днищ при H = 0.25D

$$D_{\mathbf{p}} = 2D\sqrt{1-3\left(\frac{x}{D}\right)^2};\tag{6}$$

5) для сферических днищ, а также торосферических днищ вне зоны отбортовки

$$D_{\mathbf{p}} = 2R,\tag{7}$$

где R - для торосферических днищ определяют по ГОСТ 14249.

2.1.2. Расчетный диаметр отверстия в стенке обечайки, перехода или днища при наличии штуцера с круглым поперечным сечением, ось которого совпадает с нормалью к поверхности в центре отверстия (черт. 4, 6а, 6б, 11б) или кругового отверстия без штуцера определяют по формуле

$$d_{p} = d + 2c_{s}. \tag{8}$$

Расчетный диаметр отверстия и штуцера, ось которого лежит в плоскости поперечного сечения цилиндрической или конической обечайки (черт. 9в и 9г), определяют по формуле

$$d_{p} = \max \{d; 0,5t\} + 2c_{s}. \tag{9}$$

Расчетный диаметр отверстия для смещенного штуцера на эллиптическом днище (черт. 11a) определяют по формуле

$$d_{\rm p} = \frac{d + 2c_s}{\sqrt{1 - \left(\frac{2x}{D_{\rm p}}\right)^2}}.$$
 (10)

При наличии наклонного штуцера с круглым поперечным сечением, когда большая ось овального отверстия составляет угол ω с образующей обечайки (черт. 9a), расчетный диаметр отверстия определяют по формуле

$$d_{p} = (d + 2c_{s})(1 + tg^{2}\gamma \cdot \cos^{2}\omega). \tag{11}$$

Для цилиндрических и конических обечаек в случае, когда ось штуцера (черт. 96) лежит в плоскости продольного сечения обечайки (ω =0) и для всех отверстий в сферических и торосферических днищах расчетный диаметр определяют по формуле

$$d_{\rm p} = \frac{d + 2c_{\rm s}}{\cos^2 \gamma}.\tag{12}$$

Расчетный диаметр овального отверстия для перпендикулярно расположенного штуцера к поверхности обечайки определяют по формуле

$$d_{p} = (d_{2} + 2c_{s})[\sin^{2}\omega + \frac{(d_{1} + 2c_{s})(d_{1} + d_{2} + 4c_{s})}{2(d_{2} + 2c_{s})^{2}}\cos^{2}\omega].$$
(13)

Для выпуклых днищ $\omega = 0$.

Расчетный диаметр отверстия для штуцера с круглым поперечным сечением, ось которого совпадает с нормалью к поверхности обечайки в центре отверстия, при наличии отбортовки или торообразной вставки, определяют по формуле

$$d_{p} = d + 1.5(r - s_{p}) + 2c_{s}. (14)$$

2.2. Коэффициент прочности сварных соединений

Если ось сварного шва обечайки (днища) удалена от наружной поверхности штуцера на расстояние более чем три толщины укрепляемого элемента (3 ε , черт. 6б), то коэффициент прочности этого сварного соединения при расчете укрепления отверстий следует принимать φ =1. В исключительных случаях, когда сварной шов пересекает отверстие или удален от наружной поверхности штуцера на расстояние менее 3 ε , принимают $\varphi \le 1$ в зависимости от вида и качества сварного шва.

Если плоскость, проходящая через продольный шов вальцованного штуцера и ось этого штуцера, образует угол ψ не менее 60° с плоскостью продольного осевого сечения цилиндрической или конической обечайки (черт. 12), то принимают φ_1 = 1. В остальных случаях $\varphi_1 \le 1$ в зависимости от вида и качества сварного шва.

2.3. Расчетные толщины стенок

2.3.1. Расчетные толщины стенок укрепляемых элементов определяют в соответствии с ГОСТ 14249. Для эллиптических днищ, работающих под внутренним давлением, расчетную толщину стенки $s_{\mathfrak{p}}$ определяют по формуле

$$s_{\mathbf{p}} = \frac{pD_{\mathbf{p}}}{4\varphi[\sigma] - p},\tag{15}$$

где коэффициент φ определяют по п. 2.2.

2.3.2. Расчетную толщину стенки штуцера, нагруженного как внутренним, так и наружным давлением, определяют по формуле

$$s_{\text{lp}} = \frac{p(d+2c_s)}{2[\sigma]_1 \cdot \varphi_1 - p},\tag{16}$$

где коэффициент 💋 определяют по п. 2.2.

Для овального штуцера в этой формуле $d = d_1$.

2.4. Расчетные длины штуцеров

Расчетные длины внешней и внутренней частей круглого штуцера, участвующие в укреплении отверстий и учитываемые при расчете (черт. 4), определяют по формулам:

$$l_{1p} = \min \left\{ l_1; 1,25\sqrt{(d+2c_s)(s_1 - c_s)} \right\}, \tag{17}$$

$$l_{3p} = \min \left\{ l_3; \ 0.5\sqrt{(d+2c_s)(s_3 - c_s - c_{s1})} \right\}. \tag{18}$$

Для овального штуцера (черт. 10) в этих формулах $d = d_2$.

В случае проходящего штуцера (черт. 5) $s_3 = s_1$.

- 2.5. Расчетная ширина
- 2.5.1. Ширину зоны укрепления в обечайках, переходах и днищах определяют по формуле

$$L_0 = \sqrt{D_{\rm p}(s-c)}. (19)$$

2.5.2. Расчетную ширину зоны укрепления в стенке обечайки, перехода или днища в окрестности штуцера при наличии торообразной вставки или вварного кольца (черт. 8) определяют по формуле

$$l_{p} = \min \{l; L_{0}\}. \tag{20}$$

В случае отбортовки (черт. 7), а также при отсутствии торообразной вставки или вварного кольца

$$l_{\rm p} = L_0. \tag{21}$$

2.5.3. Расчетную ширину накладного кольца определяют по формуле

$$l_{2p} = \min \left\{ l_2; \sqrt{D_p(s_2 + s - c)} \right\}.$$
 (22)

2.5.4. Для отверстий, удаленных от других конструктивных элементов на расстояние $L_{\rm K} < L_0$ (черт. 6), расчетную ширину $l_{\rm p}$, $l_{\rm 2p}$ определяют следующим образом:

для зоны соединения обечайки с кольцом жесткости, плоским днищем, трубной решеткой (черт. 6а) - по формулам (20) или (21) и (22);

для зоны соединения конической обечайки с другой обечайкой и обечайки с коническим или выпуклым днищем (черт. 6б), а также с фланцем или седловой опорой сосуда по формулам:

$$l_{p} = L_{K}; l_{2p} = \min \{l_{2}; L_{K}\}.$$
 (23)

2.6. Отношения допускаемых напряжений:

- 1) для внешней части штуцера $x_1 = \min \left\{ 1,0; \frac{[\sigma]_1}{[\sigma]} \right\}$;
- 2) для накладного кольца $x_2 = \min \left\{ 1, 0; \frac{[\sigma]_2}{[\sigma]} \right\}$
- 3) для внутренней части штуцера $x_3 = \min \left\{ 1,0, \frac{[\sigma]_3}{[\sigma]} \right\}$
- 2.7. Расчетный диаметр определяют по формуле

$$d_{0p} = 0.4 \sqrt{D_{p}(s - c)}. \tag{24}$$

3. ОДИНОЧНЫЕ ОТВЕРСТИЯ В СОСУДАХ И АППАРАТАХ

Отверстие считается одиночным, если ближайшее к нему отверстие не оказывает на него влияния, что имеет место, когда расстояние между наружными поверхностями соответствующих штуцеров (черт. 13) удовлетворяет условию

$$b \ge \sqrt{D_{\mathbf{p}}'(s-c)} + \sqrt{D_{\mathbf{p}}''(s-c)}. \tag{25}$$

3.1. Расчетный диаметр одиночного отверстия, не требующего укрепления

Расчетный диаметр одиночного отверстия, не требующего дополнительного укрепления, при наличии избыточной толщины стенки сосуда вычисляется по формуле

$$d_0 = 2 \left(\frac{s - c}{s_p} - 0.8 \right) \sqrt{D_p(s - c)}. \tag{26}$$

Если расчетный диаметр одиночного отверстия удовлетворяет условию

$$d_{\mathfrak{p}} \le d_{\mathfrak{0}},\tag{27}$$

то дальнейших расчетов укрепления отверстий не требуется.

В случае невыполнения условия (27) расчет укрепления проводят по пп. 3.2 и 3.3 или 3.4.

- 3.2. Условие укрепления одиночных отверстий
- 3.2.1. В случае укрепления отверстия утолщением стенки сосуда или штуцера либо накладным кольцом, либо торообразной вставкой или отбортовкой должно выполняться условие

$$l_{1p}(s_1 - s_{1p} - c_s) \chi_1 + l_{2p} s_2 \chi_2 + l_{3p}(s_3 - c_s - c_{s1}) \chi_3 + l_p(s - s_p - c) \ge \\ \ge 0.5 (d_p - d_{0p}) s_p.$$
 (28)

Рекомендуемым вариантом укрепления является укрепление без использования накладного кольца. В этом случае расчет укрепления проводят с помощью условия укрепления (28), в котором принимается $s_2 = 0$. При этом длина внешней части штуцера l_1 отсчитывается от наружной поверхности аппарата.

При отсутствии штуцера и укреплении отверстия накладным кольцом или утолщением стенки сосуда при расчете в условии укрепления $l_{1p} = l_{3p} = 0$. При этом исполнении ширину накладного кольца отсчитывают от края отверстия:

3.2.2. При укреплении отверстия штуцером произвольной формы (черт. 14) условие укрепления выражается в общем виде

$$A_1 + A_3 \ge A = 0.5(d_p - d_{0p})s_p.$$
 (29)

Здесь площади A_1 и A_3 определяются без учета прибавок c , c_s и расчетных толщин стенок штуцера s_{1p} и сосуда s_p .

Расчетные длины штуцера, учитываемые при определении площадей A_1 и A_3 , определяются следующим образом: l_{1p} - по формуле (17), l_{3p} - по формуле (18).

3.2.3. Расчет укрепления отверстия с помощью накладного кольца при необходимости определения площади этого кольца проводится по формуле

$$A_{2} \ge \frac{1}{\chi_{2}} \{0.5(d_{p} - d_{0p})s_{p} - l_{p}(s - s_{p} - c) - l_{1p}(s_{1} - s_{1p} - c_{s})\chi_{1} - l_{3p}(s_{3} - c_{s} - c_{s1})\chi_{3}\},$$

$$(30)$$

где A_2 = $l_{2p} \cdot s_2$ - площадь накладного кольца.

Если $s_2 > 2s$, то накладные кольца рекомендуется устанавливать снаружи и изнутри сосуда или аппарата , причем толщина наружного кольца принимается $0,5s_2$, внутреннего - $(0,5s_2+c)$.

Таблица 2

Вариан укрепле ия		Исходные геометрическ ие данные	Расчетные параметры	Пара- метры, опреде- ляемые по номо- грамма м	Урав- нение , опред - еляю- щее тол- щину стенк и	Схема расчета исходные в промежуточи данные; • - резу
Укрепле ие отверсти штуцеро и стенко сосуда	на ия стенки ом сосуда	d , d_p , D_p , s_1 , s_{1p} , c_s	$\frac{d_{\rm p}}{D_{\rm p}} \sqrt{K_1 \varphi \frac{[\sigma]}{p}}$ $\frac{K_2}{\sqrt{\chi_1}} \left(\frac{\varphi}{\varphi_1}\right)^{3/4} \cdot \left(\frac{d + 2c_s}{D_{\rm p}}\right)$	V	(31)	

			$V_1 = \frac{s_{1p}}{s_1 - c_3}$			
Укреплен ие отверстия штуцером и стенкой сосуда	Толщи на стенки штуцер а	d , d_p , D_p , s , s_p , c , c_s	$\frac{d_{p}}{D_{p}} \sqrt{K_{1} \varphi \cdot \frac{[\sigma]}{p}}$ $\frac{K_{2}}{\sqrt[4]{x_{1}}} \left(\frac{\varphi}{\varphi_{1}}\right)^{3/4} \cdot \left(\frac{d + 2c_{s}}{D_{p}}\right)$ $V = \frac{s_{p}}{s - c}$	V ₁	(32)	
Укреплен ие отверстия без штуцера	Толщи на стенки сосуда	d _p , D _p ,	$\frac{d_{\rm p}}{D_{\rm p}} \sqrt{K_1 \varphi \frac{[\sigma]}{p}}$ $V = 1.0$	V	(30)	

Для сферических обечаек и выпуклых днищ K_1 =2; K_2 =1,68.

Для цилиндрических и конических обечаек K_1 =1; K_2 =1.

Все исходные данные определяются по соответствующим пунктам настоящего стандарта.

3.3. Графический расчет

Расчет укрепления отверстия без использования накладного кольца и внутренней части штуцера можно производить с использованием номограмм по черт. 1-3 и табл. 2:

1) при известной толщине стенки штуцера по формуле

$$s \ge \frac{s_{\mathbf{p}}}{V} + c; \tag{31}$$

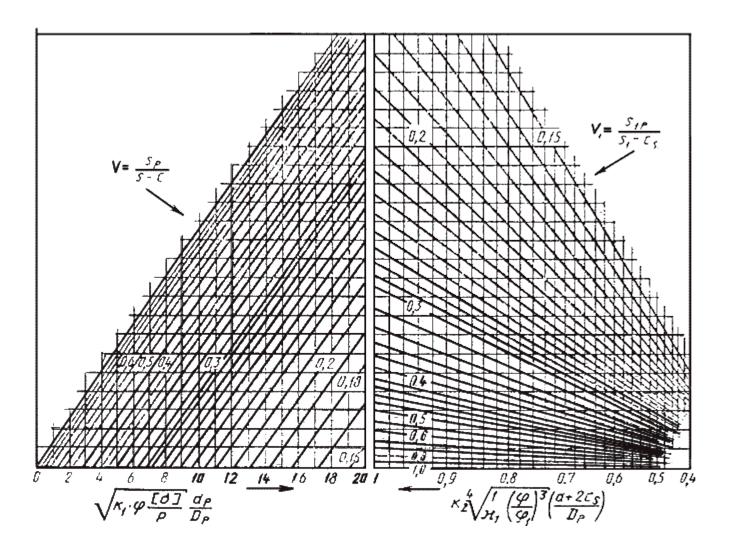
2) при известной толщине стенки обечайки, перехода или днища по формуле

$$s_1 \ge \frac{s_{1p}}{V_1} + c_s, \tag{32}$$

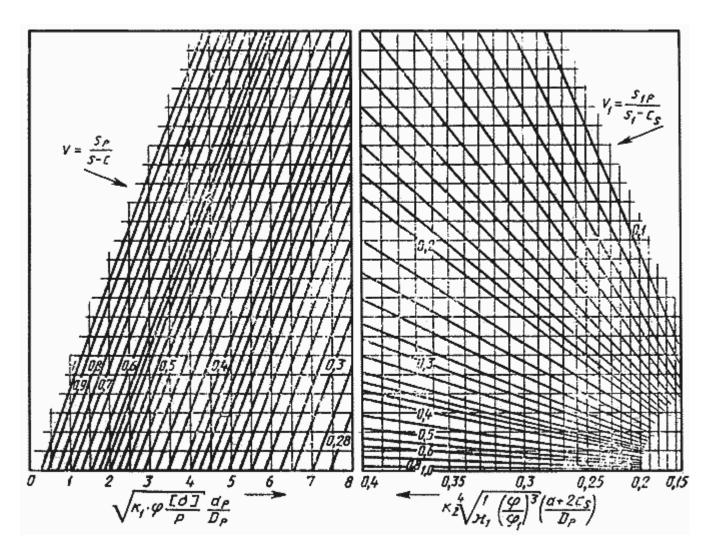
где V и V_1 определяются по номограммам черт. 1-3 и табл. 2.

При расчете по номограммам должны быть выполнены условия

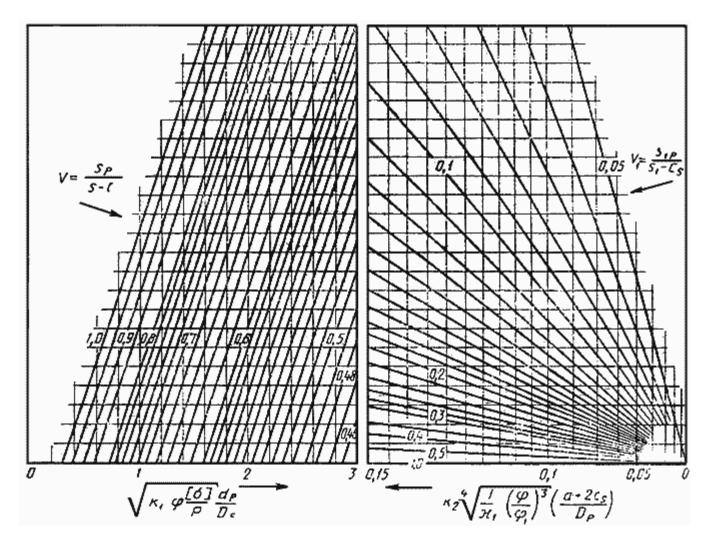
$$\frac{l_1 \ge 1,25\sqrt{(d+2c_s)(s_1-c_s)};}{l_p \ge \sqrt{D_p(s-c)}.}$$
 (33)


3.4. Допускаемое внутреннее избыточное давление

Допускаемое внутреннее избыточное давление определяют по формуле


$$[p] = \frac{2K_1(s-c)\varphi[\sigma]}{D_p + (s-c)V} \cdot V, \tag{34}$$

$$V = \min \left\{ 1; \quad \frac{1 + \frac{l_{1p}(s_1 - c_s)\chi_1 + l_{2p}s_2\chi_2 + l_{3p}(s_3 - c_s - c_{s1})\chi_3}{l_p(s - c)}}{1 + 0.5\frac{d_p - d_{0p}}{l_p} + K_1\frac{d + 2c_s}{D_p} \cdot \frac{\varphi}{\varphi_1} \cdot \frac{l_{1p}}{l_p}} \right\}$$
(35)


Для овального штуцера в этой формуле $d = d_1$.

Черт. 1

Черт. 2

Черт. 3

4. УЧЕТ ВЗАИМНОГО ВЛИЯНИЯ ОТВЕРСТИЙ В СОСУДАХ И АППАРАТАХ, НАГРУЖЕННЫХ ВНУТРЕННИМ ДАВЛЕНИЕМ

Если не выполнено условие (25), то расчет таких взаимовлияющих отверстий (черт. 13 и 15) выполняется следующим образом: вначале рассчитываются укрепления для каждого из этих отверстий отдельно в соответствии с разд. 4, затем проверяется достаточность укрепления перемычки между отверстиями, для чего должно быть определено допускаемое давление для перемычки по формуле

$$[p] = \frac{2K_1(s-c) \cdot \varphi[\sigma]}{0.5(D'_p + D''_p) + (s-c)V} \cdot V, \tag{36}$$

$$V = \min \begin{cases} 1 + \frac{l'_{1p}(s'_{1} - c'_{s})\chi'_{1} + l'_{2p}s'_{2}\chi'_{2} + l'_{3p}(s'_{3} - c'_{s} - c'_{s1})\chi_{3} + \frac{b(s - c)}{b(s - c)} \\ K_{3}\left(0.8 + \frac{d'_{p} - d''_{p}}{2b}\right) + K_{1}\left(\frac{d' + 2c'_{s}}{D'_{p}} \cdot \frac{\varphi'}{\varphi'_{1}} \cdot \frac{l'_{1p}}{b} + \frac{1}{2b} + \frac{l''_{1p}(s''_{1} - c_{s})\chi''_{1} + l''_{2p}s''_{2}\chi''_{2} + l''_{3p}(s''_{3} - c''_{s} - c''_{s1})\chi''_{3}}{b(s - c)} + \frac{d'' + 2c''_{s}}{D''_{p}} \cdot \frac{\varphi''}{\varphi''_{1}} \cdot \frac{l''_{1p}}{b} \end{cases}$$

$$(37)$$

При совместном укреплении двух взаимовлияющих отверстий общим накладным кольцом (черт. 13) коэффициент понижения прочности определяют по формуле

$$V = \min \left\{ \begin{cases} 1 + \frac{l_{1p}'(s_{1}' - c_{s}')\chi_{1}' + l_{1p}''(s_{1}'' - c_{s})\chi_{1}' + L_{2}s_{2}\chi_{2+}}{b(s - c)} \\ \frac{b(s - c)}{K_{3} \left(0.8 + \frac{d_{p}' + d_{p}''}{2b}\right) + K_{1} \left(\frac{d' + 2c}{D_{p}} \cdot \frac{\varphi'}{\varphi_{1}'} \cdot \frac{l_{1p}'}{b} + \frac{d'' + 2c_{s}''}{b'} \cdot \frac{\varphi'}{\varphi_{1}'} \cdot \frac{l_{1p}''}{b} + \frac{d'' + 2c_{s}''}{D_{p}''} \cdot \frac{e''}{\varphi_{1}''} \cdot \frac{l_{1p}''}{b} + \frac{d''' + 2c_{s}''}{D_{p}'''} \cdot \frac{\varphi''}{\varphi_{1}''} \cdot \frac{l_{1p}''}{b} \right\}$$

$$(38)$$

где $L_2 = \min \{b; l'_{2p} + l''_{2p}\}.$

Для овального штуцера в формулах (37) и (38) $d' = d_1'$ и $d'' = d_1''$.

Если ось сварного шва обечайки (днища) удалена от наружных поверхностей обоих штуцеров более чем на три толщины стенки укрепляемого элемента (3s) и не пересекает перемычку, то коэффициент прочности этого сварного шва в формулах (36), (37) и (38) следует принимать $\varphi = 1$. В остальных случаях $\varphi \le 1$ в зависимости от вида и качества этого сварного шва.

Коэффициенты прочности продольных сварных швов штуцеров $\varphi_1' = 1$ и $\varphi_1'' = 1$, если соответствующие сварные швы составляют на окружности штуцеров с линией, соединяющей центры отверстий (черт. 12) центральные углы ψ' и ψ'' не менее 60°C. В остальных случаях $\varphi_1' \le 1$ и $\varphi_1'' \le 1$ в зависимости от вида и качества соответствующего сварного шва.

Коэффициент K_3 для цилиндрических и конических обечаек определяется по формуле

$$K_3 = \frac{1 + \cos^2 \beta}{2}. (39)$$

Угол В определяется в соответствии с черт. 15.

Для выпуклых днищ $K_3 = 1$.

При укреплении двух близко расположенных отверстий другими способами нужно, чтобы половина площади, необходимой для укрепления в продольном сечении (черт. 13), размещалась между этими отверстиями.

Для ряда отверстий (черт. 17) коэффициент понижения прочности определяется по формуле

$$V = \min \left\{ 1; \quad \frac{2b_1}{(b_1 + d + 2c_s)(1 + \cos^2 \beta_1)}; \quad \frac{2b_2}{(b_2 + d + 2c_3)(1 + \cos^2 \beta_2)} \right\}. \tag{40}$$

Расчет по разд. 5 не применим, если имеются взаимовлияющие отверстия и одно из них выполнено в соответствии с черт. 8.

5. УКРЕПЛЕНИЕ ОТВЕРСТИЙ В СОСУДАХ И АППАРАТАХ, НАГРУЖЕННЫХ НАРУЖНЫМ ДАВЛЕНИЕМ

Допускаемое наружное давление определяют по формуле

$$[p] = \frac{[p]_{\pi}}{\sqrt{1 + \left(\frac{[p]_{\pi}}{[p]_E}\right)^2}},\tag{41}$$

где $[p]_{\pi}$ - допускаемое наружное давление в пределах пластичности, определяемое по формуле (34) как допускаемое внутреннее избыточное давление для сосуда или аппарата с отверстием;

 $[p]_{E}$ - допускаемое наружное давление в пределах упругости, определяемое по ГОСТ 14249 для соответствующих обечайки и днища без отверстий.

При наличии взаимного влияния отверстий $[p]_{\pi}$ определяется аналогично [p] по разд. 4 для каждого отверстия в отдельности и для перемычки, а затем из полученных значений принимается меньше.

Для обечаек или днищ с кольцами жесткости расчет проводится отдельно для каждого участка с отверстиями между соседними кольцами.

6. МИНИМАЛЬНЫЕ РАЗМЕРЫ СВАРНЫХ ШВОВ

Минимальные размеры сечения сварных швов \triangle , \triangle_1 , \triangle_2 , соединяющих приварные штуцера или накладные кольца с корпусом сосуда или аппарата, должны удовлетворять следующим условиям:

для штуцеров в соответствии с черт. 18а, б

$$\Delta \ge 2, 1 \frac{l_1 s_1}{d + 2s_1};$$

для накладных колец в соответствии с черт. 18 в

$$\left(1+\frac{2l_2}{d+2s_1}\right)\Delta_1+\Delta_2\geq 2,1\frac{l_2s_2}{d+2s_1},$$

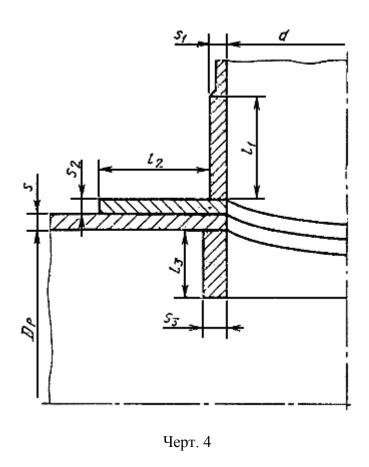
где Δ , Δ_1 , Δ_2 - минимальные размеры сечения сварных швов (черт. 18).

ПРИЛОЖЕНИЕ

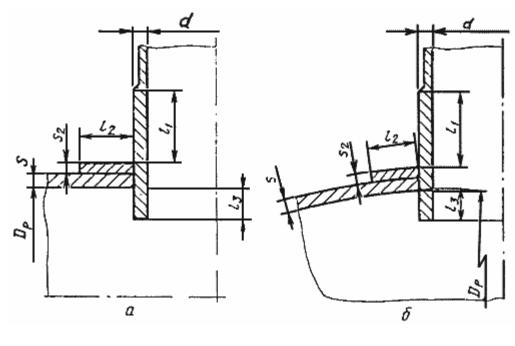
ТЕРМИНЫ, ИСПОЛЬЗОВАННЫЕ В СТАНДАРТЕ, И ИХ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

Термин	Условное обозначение
Расчетная площадь вырезанного сечения (черт. 14), мм ²	A
Площадь укрепляющего сечения внешней части штуцера, мм 2	A_1
Площадь поперечного сечения накладного кольца, мм 2	A_2
Площадь укрепляющего сечения внутренней части штуцера, мм ²	A_3

Минимальное расстояние между наружными поверхностями двух соседних штуцеров (черт. 13 и 15), измеряемое по поверхности укрепляемого элемента, мм	ь
Сумма прибавок к расчетной толщине стенки обечайки перехода или днища, мм	с
Сумма прибавок к расчетной толщине стенки, мм	c_s , c_s' , c_s''
Прибавка на коррозию к расчетной толщине стенки штуцера, мм	$c_{s},\ c_{s}',\ c_{s}''$ $c_{s_{1}}''$
Внутренний диаметр цилиндрической обечайки или выпуклого днища, мм	D
Внутренний диаметр конической обечайки (перехода или днища) по центру укрепляемого отверстия (черт. 6б), мм	$D_{\mathbf{K}}$
Расчетные внутренние диаметры укрепляемого элемента, мм	$D_{\mathbf{p}}$, $D'_{\mathbf{p}}$, $D''_{\mathbf{p}}$
Внутренние диаметры штуцеров, мм	$D_{\mathbf{p}}, \ D'_{\mathbf{p}}, \ D''_{\mathbf{p}}$ $d, \ d', \ d''$
Наибольший расчетный диаметр отверстия, не требующего дополнительного укрепления, мм	d_0
Расчетный диаметр, мм	d_{0p}
Большая и малая оси овального отверстия, мм	$egin{aligned} d_{0\mathrm{p}} \ & d_1, d_2 \ & d_{\mathrm{p}} \end{aligned}$
Расчетный диаметр отверстия, мм	d_{p}
Расстояние от края штуцера до внешнего края днища (черт. 11a, 11б), мм	e
Внутренняя высота эллиптической части днища, мм	H
Коэффициенты	K_1 , K_2 , K_3
Ширина зоны укрепления, прилегающей к штуцеру, при отсутствии накладного кольца (черт. 14), мм	L_0
Расстояние от наружной поверхности штуцера до ближайшего несущего конструктивного элемента (черт. 6), мм	$L_{ m K}$
Расчетная ширина зоны укрепления при использовании общего накладного кольца для двух отверстий, мм	L_2

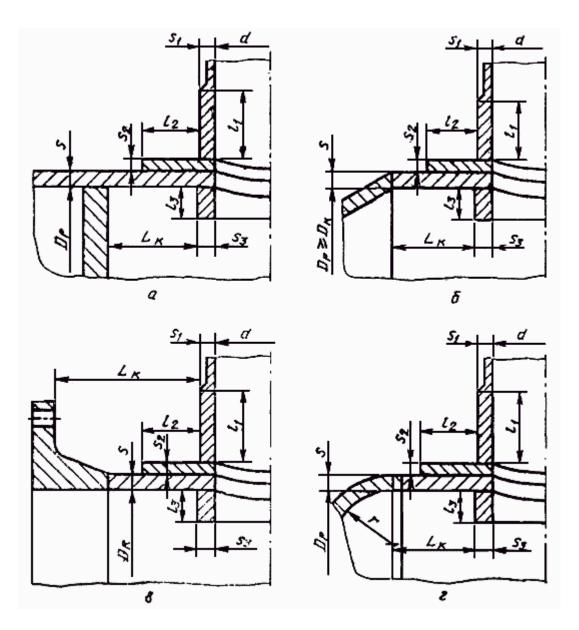

Исполнительная ширина торообразной вставки или вварного кольца, мм	l
Расчетная ширина зоны укрепления в окрестности штуцера или торообразной вставки, мм	$l_{ m p}$
Исполнительные длины штуцеров, мм	l_1, l'_1, l''_1 l_3, l'_3, l''_3
Расчетные длины штуцеров, мм	$l_{1p}, l_{1p}', l_{1p}''$ $l_{3p}, l_{3p}'', l_{3p}''$
Исполнительная ширина накладного кольца, мм	l_2
Расчетная ширина накладного кольца, мм	l_{2p}
Расчетное давление в сосуде или аппарате, МПа	p
Допускаемое давление в элементах сосудов и аппаратов, МПа	[p]
Допускаемое давление в пределах пластичности, МПа	$[p]_{\pi}$
Допускаемое давление в пределах упругости, МПа	$[p]_{E}$
Наибольший внутренний радиус выпуклого днища, мм	R
Радиус кругового накладного кольца при совместном укреплении отверстий (черт. 16), мм	$R_{\mathbf{H}}$
Радиус несимметричного накладного кольца около отверстия диаметром d^1 (черт. 16), мм	R'
Радиус несимметричного накладного кольца около отверстия диаметром d'' (черт. 16), мм	R"
Радиус отбортовки или торовой части торообразной вставки (черт. 7 и 8a), мм	r
Исполнительная толщина стенки обечайки, перехода или днища, мм	${\mathcal S}$
Расчетная толщина стенки обечайки, перехода или днища, мм	$s_{ m p}$
Исполнительные толщины стенок штуцеров, мм	$egin{array}{lll} s_1, & s_1^{'}, & s_1^{''} \ & & & & s_{ m lp}, & s_{ m lp}^{''}, & & & & \end{array}$
Расчетные толщины стенок штуцеров, мм	$s_{ m lp}$, $s_{ m lp}^{'}$, $s_{ m lp}^{''}$

Исполнительные толщины накладных колец, мм	s_2 , s'_2 , s
Исполнительные толщины внутренних частей штуцеров (черт. 4-6, 13), мм	s_2, s_2', s_3
Длина отверстия в окружном направлении (черт. 9в, 9г), мм	t
Коэффициенты понижения прочности	V , V_1
Расстояние от центра укрепляемого отверстия до оси эллиптического днища, мм	х
Половина угла при вершине конической обечайки, +°	α
Угол между линией, соединяющей центры двух взаимовлияющих, и образующей обечайки (черт. 15), +°	β
Угол между осью наклонного штуцера и нормалью к поверхности цилиндрической или конической обечайки, а также выпуклого днища (черт. 9б и 11), +°	γ
Минимальные размеры сварных швов, соединяющих штуцеры и накладные кольца со стенкой обечайки, перехода или днища, мм	\triangle , \triangle_1 , \triangle
Отношения допускаемых напряжений	$egin{array}{cccccccccccccccccccccccccccccccccccc$
Допускаемое напряжение для материала обечайки, перехода или днища при расчетной температуре, МПа	$[\sigma]$
Допускаемое напряжение для материала внешней части штуцера при расчетной температуре, МПа	$[\sigma]_1$
Допускаемое напряжение для материала накладного кольца при расчетной температуре, МПа	$[\sigma]_2$
Допускаемое напряжение для материала внутренней части штуцера при расчетной температуре, МПа	$[\sigma]_3$
Коэффициент прочности сварных соединений обечаек и днищ	Ø
Коэффициент прочности продольного сварного соединения	φ_1

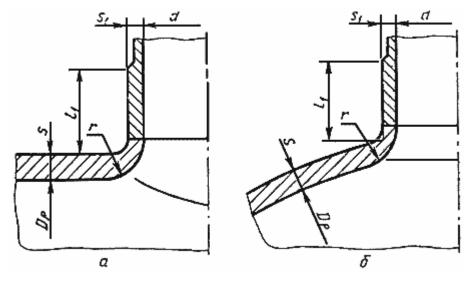

Угол между плоскостью, проходящей через продольный шов и ось штуцера, и плоскостью продольного осевого сечения обечайки (черт. 12 а), +°	W
Углы между плоскостью, проходящей через ось и продольный шов штуцера, и плоскостью, проходящей через линию, соединяющую центры отверстий (черт. 12б), +°	Ψ', Ψ"
Угол между большой осью овального отверстия и плоскостью, проходящей через ось обечайки сосуда (черт. 15), +°	ω

Величины c , c_s , p , $[\sigma]$, $[\sigma]_1$, $[\sigma]_2$, $[\sigma]_3$, φ , φ_1 определяются по ГОСТ 14249.

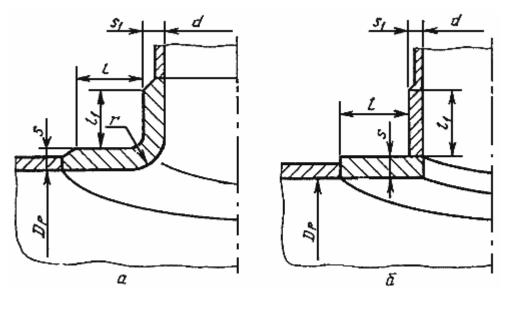
Основная расчетная схема соединения штуцера со стенкой сосуда



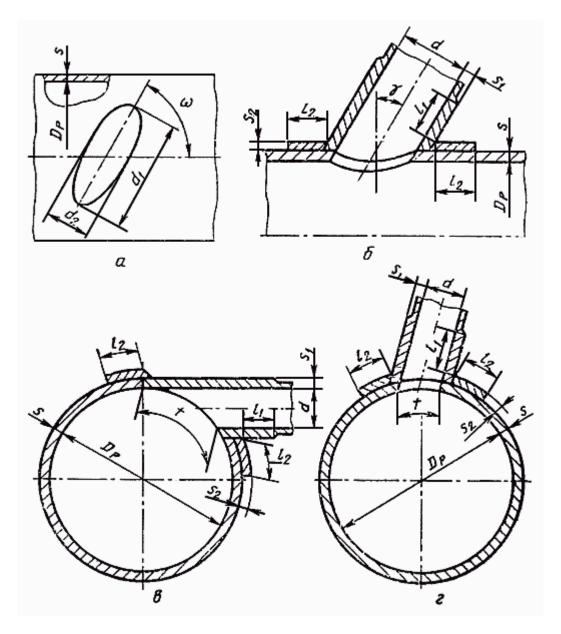
Укрепление отверстий при наличии проходящего штуцера


Черт. 5

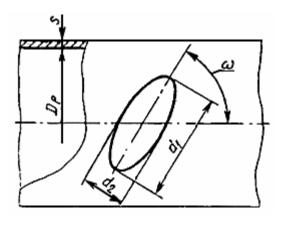
Укрепление отверстий при наличии близко расположенных конструктивных элементов (непроходящие штуцера)


Черт. 6

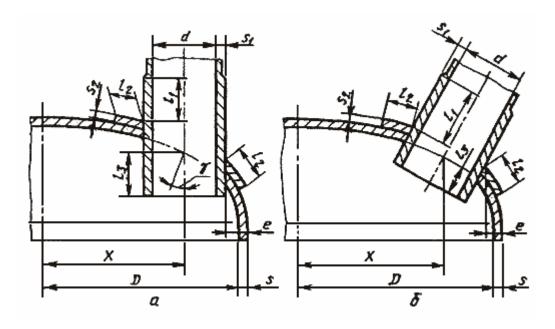
Укрепление отверстия отбортовкой


Черт. 7

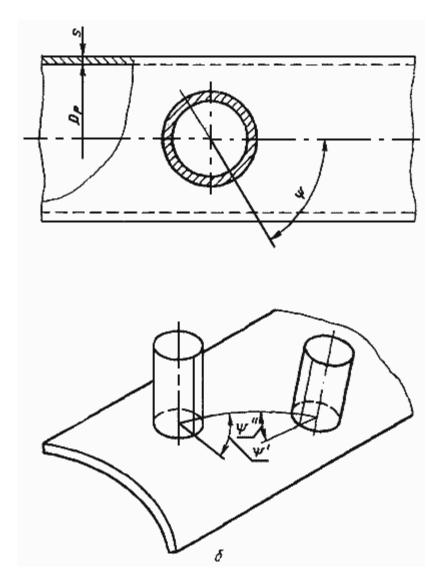
Укрепление отверстия торообразной вставкой или вварным кольцом


Черт. 8

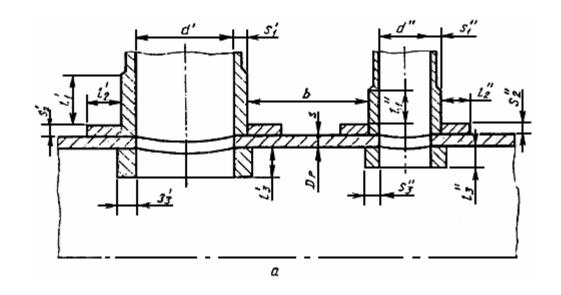
Наклонные штуцера на обечайке

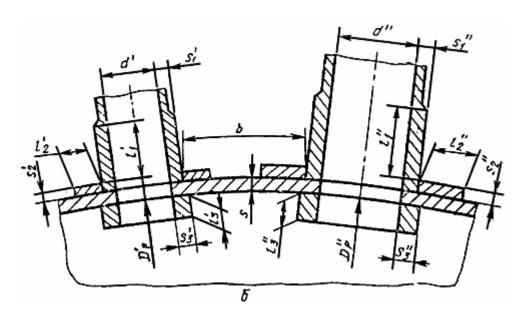

Черт. 9

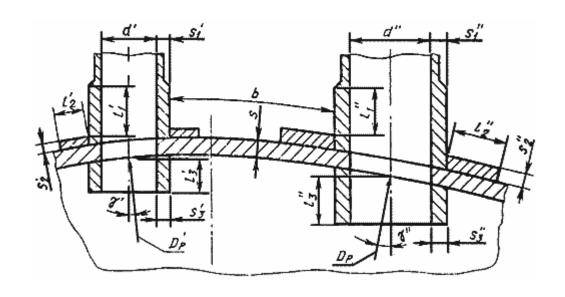
Отверстие для овального штуцера, перпендикулярного к поверхности обечайки


Черт. 10

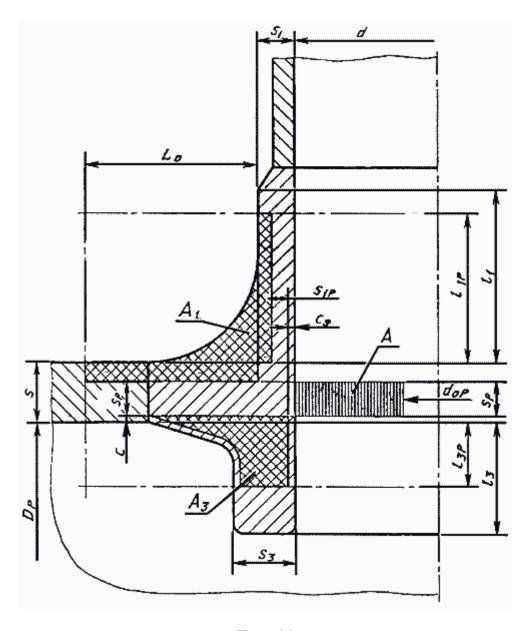
Смещенные штуцера на выпуклом днище

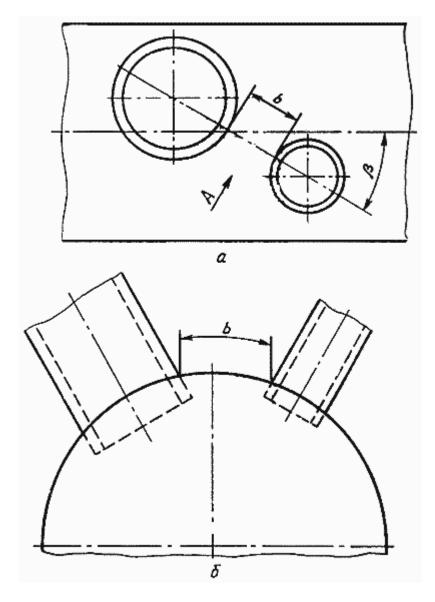

Черт. 11


Учет влияния сварных швов

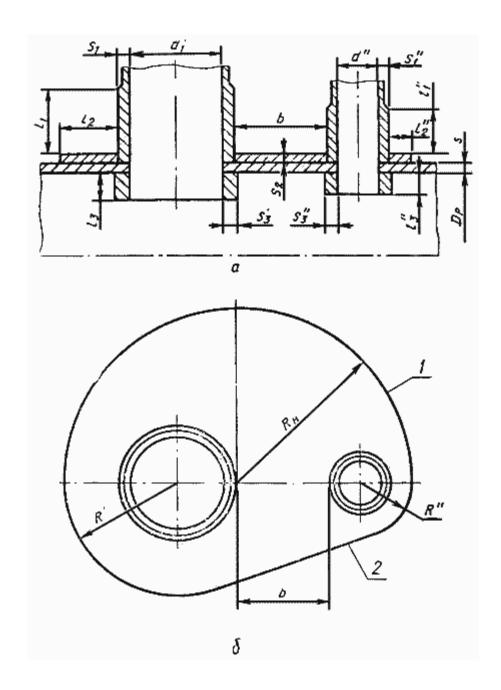


Черт. 12


Укрепление взаимовлияющих отверстий

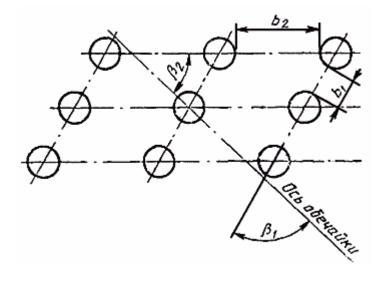


Компенсация вырезанного сечения штуцером произвольной формы

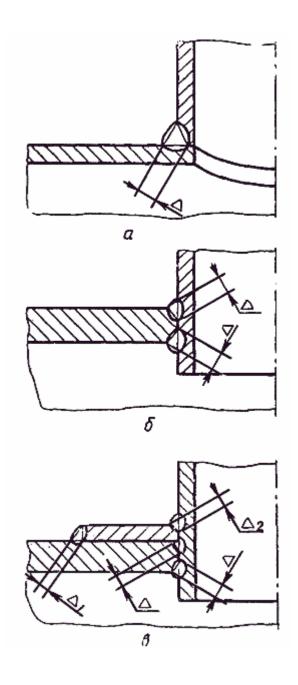

Черт. 14

Общий случай расположения взаимовлияющих отверстий

Черт. 15


Совместное укрепление взаимовлияющих отверстий

- 1 укрепление круговым накладным кольцом; 2 укрепление несимметричным кольцом


Черт. 16

Ряды отверстий

Черт. 17

Минимальные размеры сварных швов

Черт. 18

Текст документа сверен по: официальное издание М.: Издательство стандартов, 1989